PROJECTILE TRAUMA

- Information that can be gained from a bullet wound to bone include:
 - Firearm type
 - Characteristic of projectile
 - Placement of weapon (distance from victim)
 - Sequence of multiple wounds
 - Handedness of assailant

Types of Small Arms Weapons:

- **Handguns**
 - Single-shot pistols
 - Derringers
 - Revolvers
 - Automatic pistols

- **Rifles**
 - Manual reloading types
 - Semi-automatic
 - Fully automatic
 - Submachine guns
 - Machine guns
 - Shotguns

Firearm Nomenclature

- **Rifled barrel**
 - Lands
 - Grooves
 - Bore

- **Caliber**
 - Supposedly the diameter of the bore from land to land - in reality, caliber doesn't always reflect exact bullet size
 - Caliber can be expressed in inches or mm

Pistol Ammunition

- Jacketed Hollow Points
- Plain Lead Bullets
- Full Metal Jackets
- "Hydra-shock"

Rifle Ammunition

- 45 S&W Centerfire Cartridge

Shotgun barrel diameters are measured in gauges

- Refers to maximum weight of lead ball that would fit down the barrel
- i.e. 10 gauge refers to a 1/10th pound lead ball
- The shot pellets are referred to by number:
 - #12 = 0.05 in. diameter
 - #2 = 0.10 in. diameter
Projectile Velocity

- Velocity is more important than caliber when considering extent of trauma
- A bullet has kinetic energy and kinetic energy and velocity are related
 \[KE = \frac{WV^2}{2g} \]
 So, doubling the velocity (V) without changing bullet weight (W) quadruples the kinetic energy
- High velocity bullets can create massive tissue damage
 Rifle bullets generally have higher velocities than hand gun bullets

Bullet Travel

- Rifling (spiral grooves) in barrel cause the bullet to spin on its long axis
- Bullets begin to yaw and then tumble as they travel
 - The bullet may impact on its side, causing a non-circular wound
 - The bullet may have been fired at an angle to the target, causing a graze or tangential wound

Effects on Bone

- General scheme
 Bullets generally cause a funnel-shaped wound with beveled edges
- Types of bevels created
 Inward - seen at the entry site
 Outward - seen at the exit site
 Reverse - beveling in the opposite direction at either the entrance or exit site
 Reverse beveling is not extensive

Wound Shape

- If bullet is not tumbling and is perpendicular to bone, the entrance wound will be round
- If the bullet is jacketed, it will be less likely to fracture and it may create a similarly-sized exit wound - but with outward beveling
• A bullet with low kinetic energy may ricochet once inside the cranium, therefore not producing an exit wound

About 10-25% of cranial gunshot wounds have no exit wound

• Bullets that are tumbling or do not strike perpendicular to the bone will produce an oval hole

• Keyhole shapes are usually produced when a bullet grazes the bone, so it is simultaneously an entrance and an exit wound

The bullet may fragment, part of it continuing on into the cranium

Keyhole wound

• Irregularly-shaped wounds are more typical of exit wounds than of entrance wounds

These shapes are caused as the bullet deforms or shatters

Hollow-points and soft-point bullets are most likely to deform

Entrance or Exit?

Wound Size

• Factors affecting wound size:
 Entrance vs. exit wound
 Bullet characteristics (caliber, construction, velocity)
 Thickness of bone

• In general (for cranial wounds)
 Larger caliber bullets create larger entry wounds
 Unjacketed ammunition tends to create larger wounds than the same caliber of jacketed ammo

• There is considerable variation in wound size caused by the same caliber bullet

Larger-than-caliber wounds may be caused by vault thickness - thicker vault causes increased deformation in bullets

Smaller-than-caliber wounds may result from:
 Bending of bone which resists fractures, thus bone may “snap back” after bullet passes through
 Bullet fragments
 Impact near previous fracture or at suture
Fracture Lines
- Fracture lines on the vault have been more intensively studied than those on long bones.
- Radiating fracture lines are caused by the impact, fracture lines follow weaknesses in the bone tissues.
- Fracture lines will stop when the energy dissipates.
 - They may meet a foramen, a suture, or a preexisting fracture.
 - When the energy is high, fracture lines may meet a suture, follow the suture for a while, then continue through the adjacent cranial bone.
- Concentric fractures are caused by an increase in intracranial pressure.
 - The pressure is created as soft tissue (the brain) is compressed by the bullet.
 - Extensive concentric fractures occur when gasses expelled from the gun enter along with the bullet.

Bullet Wound Analysis
- Bullet entrance wounds on long bones tend to be lozenge-shaped (butterfly fracture) - exit wounds tend to be irregular in shape.
- One should locate the entrance and exit wound (if present).
 - Document the location, size, and shape of each.
- The smallest diameter of entrance wound may be used to estimate caliber.
 - Caliber should only be estimated as large vs. small (up to .32 caliber).
- Bullet construction is difficult to estimate because high-velocity jacketed bullets can cause as much damage as lower-velocity non-jacketed bullets.
- Velocity is difficult to estimate and can only be estimated as high vs. low.
 - All other factors being equal - high-velocity bullets cause greater damage with radiating and concentric fractures.
 - Direction of fire can be estimated by aligning entrance and exit wound.
 - With keyhole wounds, the defect with inward beveling points to the direction of fire.
- Estimation of sequence relies on the fact that fracture lines will not cross preexisting fractures.

Pellet Wounds
- Direction of fire and range of fire can be estimated from wounds.
 - Direction of fire is estimated by determining on which aspect of the body the wounds are on.
 - Range of fire is estimated by a ballistics expert.
 - Distance = contact to 2 feet
 - Distance = 3 feet
 - Distance = 4 feet
Entrance Multiple Exits
Postcranial Gunshot Wound

“Exit wound” on inner table from tear gas canister